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For molecular systems with a relatively small number of degrees
of freedom internal relaxation processes are described by a non-homogeneous
master equation for non-diagonal elements of thé density matrix. The
theory is applied to internal vibrational relaxation and intramolecular
rearrangement (isomerization) reactions. The general character and

certain types of solutions of the master equation are investigated.
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1) Introduction

In the theory of chemical reactions the reaction pro-
. cess is often pictured as the consequence of two interfe-
ring mechanisms which may be named external and internal
collisions. Sometimes one also refers to the latter mecha-
nism as "redistribution of energy between different degrees
of freedom”. In many instances, so in the case of unimole-
cular reactions and of bimolecular reactions with long-li-
ving reaction complexes, it is the internal mechanism
which plays the decisive role in transferring a molecule
or supermolecule from one region of relative stability
within the configuration space to another. The perturbation
by the external collisions of a molecular system can then
be assumed to remain localized within one of its chemical
configurations, with other words, reation in such cases
is very unlikely to occur as the immediate consequence of

an external collision.

.

Picturing the reaction by the internal mechanism was

1,2,3)

extremely fruitful in the theory of unimolecular reactions

1>O. K. Rice, H. C. Ramsperger, J. Am., Chem. Soc.

49, 1617 (1927), 50, 617 (1928)

R. A. Marcus, 0. K. Rice, J. Phys. Chem.

55, 894 (1951)

L. S. Kassel, J. Phys. Chem. 32, 225 (1928)

3)N. B. Slater, Theory of Unimolecular Reactions
Cornell, Ithaca, New York, 1959, p 22.

2)

and we shall refer to it explicitly throughout this paper.

Une of the assumptions, used in specifying the internal
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mechanism, is that the reactant molecules with internal
energy Ei form a microcanonic ensemble with equilibrium
properties ( i.e., constant density in phase space over
the reactunt region of the energy shell Ei...Ei+dEi,resp.
commutativity of the density matrix with the Hamiltonian
of the reactant-species). This implies the existence of

an intramolecular relnxation process with a relaxation
time short compared with the time between the external
collisions. Since molecules have a very small number of
degrees of freedom it is not at all evident whether and
under which circumstances such intern:l relaxation mecha-
nisms may be taken as granted.The reaction process itself
also needs further clarification. Particularly in the case
of an intramolecular rearrangement reaction (also termed
"isomerization reaction") one again makes explicit use

of the assumption thut there is an intramolecular relax-
ation mechanism, since otherwise the molecule would remain
oscillating between reactant and product configuration till
the external collisions had damped these oscillations away.
In the latter case, however, a first order rate process

could never be observed.

From the viewpoint of statistical mechanics the pro-
blem of intramolecular rearrangement reactions is the more
intriguing one since all energy levels of the reacting mo-
lecule ure digrete and non-degenerute. The forthcoming
treatment can easfi?~be speciulized to monomclecular de-
composition reactions. l{ also contains the special case

of internal vibrational relaxation.
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To the knowledge of the author, the only treatment,
of intramolecular rearrangements, different from the scheme
used for monomolecular dissociation reactions was given by
Golden and Peiser4) who based their approach on the repeated

random phases assumption. S. Goldensglso focussed attention

4) S. Golden, A.M. Peiser, J. Phys. and.Coll.Cheum., 33, 789 (1951)

5) $. wolden, Suppl. Nuovo Cimento,5, 540 (1957), 15,335 (1960)
and private comumunication

on the problem of how to understand the intuitive concept
of chemical species in terms of guantum mechanics which is

of prime importance for the present case.

Intramolecular rearrangement reactions represent a problem
by its own nature in statistical mech:nics. The systems we are
dealing with have a comparatively small number of degrees of
freeuom so that some of the assumptions, generally agreed on,
for the derivation of a master equation do not hold. Furthermore,
in contrast to the main goal of the statistical mechanical treat-
ment of ordinary systems, except those with magnetic fields,
where one calculates the timellependence of the diagonal elements
of the density matrix, we are exclusively interested in the
non-diagonal elements of ¢ (t). The master eqation we are to
derive will be non-homogeneous (reflecting the fact that the
initial density matrix does not commute with the unperturbed
Hamiltonianrjfé) and the solution at very large times will
shape into a diagonal density matrix. The relaxation times
for the non-diagonal matrix elements to disappear can then be
related to internal vibrational relaxation and the rate of
intramolecular chemical change. Rates of reactions calculated
on the basis of a purely internal relaxation mechanism, will be
meanitnzgful as long as the relaxation timé of the unperturbed
system under the action of outer collisions is long compared

with the timdfor relaxation by the internal perturbation.
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2) Characterizing- Reactant- and Product Species in a

Svstem with Intramolecular Change

The concept of molecular species, as it is used in che-
mistry, has no correspondence in basic theories for the des-
cription of nature, like classical mechanics and quantum me-
chanics. The reason is that the chemical aspect of matter is
an operational one which can be characterized by certain 1li-
mited sets of measurements. Other properties of matter are

considered to be beyond the scope of chemistry,

S. Goldens) has given a comprehensive formal description
of the operational structure of chemistry postulating the
existence of complete sets of commuting observablies which
can be used to determine the chemical state of matter in
accordance with the intuitive traditional concept of chemical
species. For the purpose of the present investigation the
construction of such a set of commuting observables will be
instrumental. At the same time the limitations of the chemical
viewpoint for molecular species which can convert into each

other will become obvious.

In dealing with a certain class of chemical reactions,
as a first step we have to characterize the properties of
any set of measurements suitable for distinguishing between
the different molecular species and for further determination
of the chemical situation., Out of the wide range of chemically
relevant measurements there may be selected different sets
with commuting observables comprising only the minimal num-
per of measurements necessary for complete determination
of the cﬁemical state of a system. Each such set can ve di-
vided into two parts so th at it will contain measurements
which serve the purpose to distinguish between different

chemical species (e. g. molecules M1, M2,... or clusters of
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molecules M1d1, M1M2, ' M1M1M1, M1M1M2, nd

also measurements which will complete the quantum mechanical

vee.. etc.) a

information, so that an initial density matrix g; is uniquely

determined.

Any two chemidally relevant measurements must enable
us to distinguish between aqﬁeast two chemical species.
Now from physical insight it is known that chemical species
may always be characterized by the atoms (or ions) out of
which they can be thought to be built up, furthermore by their
"chemical structure" which usually refers to a certain
range for the relative positions of the nuclei. "Chemical
structure”, however, may also be understood in a broader
sense, comprising electrons localized with respect to some
of the nuclei, thus allowing ions or even local excitations
to appear as a chemical species. We may idealize any set
of measurementsfor determining chemical structure by a
single observable "configuration",denoted by'?(, For our
purposes it is notmnécessary to introduce measurements
of the elementary composition (numbers of electrons and atomic

nuclei) explicitely.

In the case of an intramolecular rearrangement??/will
not even approximately commute with the Hamiltonian 9@ ’
nor will it commute with 26;, since energy and locul co-
ordinates do not commute, Nevertheless, there must be an
observable related to the energy of a molecule in one of
its chemical configurations. Let us assume there are only
two chemical species involved, the configuration of which

z &
can be found by measuring 7{ and 7% .
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- 7=

N, N,,
t (KEe) = % e b (kEey- ML

where tr denotes the trace of a matrix, will then be the re-

lative numbers of molecules in configurations 1 and L re-

I
spectively and the initial density will commute with ﬁﬁ,:

[?(IJS’03=O

The Hamiltonian and also the unperturbed Hamiltonian must

now be divisible into the following parts
g Jti. + 8€Z: szf.
¥ = XI .1.?'(!1 + JC.T,E
[®, %" ]=0, [&% K]
(%X ®T1=0, [%% K =0

I
gf andw;qg are representing the non- reactlnv speCLes

where

"

o

and

._

1 anu II. 1ne bound eigenfunctions of Zf and ;% y also of
, and ?? » must then be localized in the regions of the

respective chemical configurations. Thus, the eigenfunc-

tions]d{),ldﬁ)and ]dI>,le>, satisfying

T ’ ~I’/ ir I/
FTNALy = EX (> g FE1oag s = E—"=< (7 5
a
T hy
K, 1 %1>=E %7 ?CM =E, 14y
T
will be eigenfunctions of 7(‘and r7¥ , with
KTl 5 = 17y
z, .
X I<G> = 0

and similar equations for II.

4}

K etry = 1ty »
KEikyy = 0
IfZ(qf),,*%) and also{‘ny,[xn)} span the whole Hilvert
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I i)
space 7( and 7{ are . projection operators. Moreover, since
}«£>and[dﬁ7are so strongly localized in the region of con-
figuration I or 11 respectively, one configuration operator

will be the orthogonal complement of the other. Thus

KE=1-K*"
tr(HTP)+ (K e) =1 _

Explicit constructions of 'J{;r, 3(047, 7{1 andrr(ﬂwill be gi-~-

ven in chpt. 3.

and

At the initial time t=0 an ensemble of molecules shall
exist as chemical species I, i.e it is represented by a den~

sity matrix ? which is diagonal in the eigenrepresentation
I o

of DQ’ and 9& , -
> Presz ]

SL =‘2" / L % <Xzl
Xz

This initial density will now decay in two ways:
1) leakage through the barrier between configuration I

and 11 by tunnel -~effect
and

2) transitions caused by the perturbation 2fi

&

A characteristic time/denoted by ¢, and ?; , can be related

" to both of these processes. The time'Th/available for the

Erabf

measurement of 7¥I.andytf, is therefore limited by T; and
7; . 1o be sure that our ensemble has not changed consider-

ably during the measurement we have to make T@~4lﬂvht(ﬁﬂ@)

A limited time for the measurement of GKI-and gaj
implies an uncertainity in the energy of the order %ﬁf. On
the other hand, if g,decays very rapidly by tunnel-effect
and transitions, E: may become so0 large that the measure-

ment of ;@: would spread out the energybf the ensemble way

R LA

T
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above the barrier between configurations I and 1I. We

shall exclude this interesting case here since it is beyond
. . . . -

the scope of chemical kinetics, assuming (EL 2N

where Eatis an energy of the order of the height of the

barrier between regions 1 and I1.

T
For nearly all chemical systems one can replace ;%o

by th dependent measurements, griand Zlf, gr. representing
the electronic state of the system, its eilgenvalues e la-
belling sets of electronic quantum numbers, whereas Q}f
denotes the observable related to the vibronic energy attri-
buted to the electronic state e. gr.and.ii%ommute for at
least most systems of chemical interest.More frequently, how-.
ever,we shall find that g' and 932 , the corresponding ope-
rators for the whole system do not commute. Then Born-QOp-
penheimer separation does not hold and the ensemble of re-
actant molecules will change its distribution over the elec-
tronic states in the course of the reaction. Commuting oper-
ators, related to é ‘muiiDQ, can nearly alwaydbe constructed
in the following way. Denoting all eledronic coordinates by
x, all nuclear coordinates by X and letting ?; and<i; re-
present the kinetic energy operators of nuclei and electrons

respectively, the total Hamiltonian is (,ip the absence
of magnetic forces )
-7
9? - Jk + £¢ + Z((”pX)
§ Tt UK x ) Fres « Egle>

Solving

we can define

£ < Jl1eye Lef
e
@e= celdfie>

The diagonal pdrt of the operator SD y given by

and
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D7 = 2 ievce| Hies<el
e

will then commute with é . By this method we can always

construct sets of commutiﬁg operators, like
)

WI g.zl ('Df( °(D:C(a()
J 5 /y y o
I Iy Teol) Tyl
KT, ER, OF, OF L

" )’ :
It is clear that in cases like the above mentioned the
non-diagonal part of 53@ would occur® as part of the per-
turbation operator Zr on a later stage of the theoretical

treatment,
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3) Quantum Theory of Internal Motion of a Molecule

Description of the reaction process requires the con-
struction of a special set of eigenfunctions for the inter-

6)

nal motion of a molecule . To this behalf we shall make

o)

see L. Hofacker, Z. Naturforsch. 18 a, 607 (1963)

two restrictive assumptions:

1) The whole reaction takes place under a fixed
set e of electronic quantum numbers. E will
oA
therefore commute with 7‘( ,ZD and @g).

2) Only the action of conservative forces is ta-
ken into account. Hence, doriolis forces will
be neglected after introducing a coordinate
system which moves and rotates with the mole-
cule,

If there are N atomic nuclei with coordinates X1, ""X3N
in a coordinate system, rigidly fixed to the molecule, the
forces acting on them wiil have a potential
UJr(X1,......,X3N)
which contains the centrifugal forces and depends therefore
on the rotational quantum numbers J and - T (related to total

angular momentum and one of its components).

[N

Li2e inner motion of the molecule is now represented by wave
bPackets moving on the potential energy surface . The potential
huas the shape of two double moulds and the process of inner-
molecular conversion takes place by the passage of wavepackets
from one mould to the other. Solutions for the motion of

waves in all regions of the many-dimensional potential energy

surface are, of course, extremely difficult to obtain. However,

since the wave packets represent thermal energy, their statistical

ST T
XERO ¢ iXFRO
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weights become lower 8nd lower as their energy

rises. Examining the problem from this angleqﬁe may say
that the rate of the reaction will be determined by those
wave packets which pass the saddle between the two moulds
near its lowest point having little kinetic energy at the
same time. Those wave-packets will follow rather closely

a line of minimum curvature, termed the "reaction path",
which leads from the bottom of one mould across the saddle

point to the other mould.

Qur concern now has to be a twofold one, In the first
place we want to calculate the flux of wave-packets along
the reaction pnth. Tnis implies to establish a complete
system with the property to factorize the motion along the
reaction path from motion in other directions. On the other
hand, .we shall try to exploit the fact that the deviation

of the center of wave packets from the reaction path is small.

First we determine a family of coordinate surfaces

7,_ i 7720(4; ey Ko )

(5) !
)ZM ’/7,1 (X1,--“'/ X3N )

(there are M internal
degrees of freedom)
which shall have the property to contain the reaction path

so that

(6) R M =9

is a set of equations which has the point~-set of the reaction
path as its only solution. The coordinate. surfaces ? =const,
!

will then intersect:with the reaction path.

pm—— e .
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In the system of skewed internal coordinates

the kinetic energy operator 1s M
(7) . "zz‘g Cheil LT
ifel 4 9’ZJ' ije!
M; Iy
24 2y
6 2— e X, 9%,
G = det 61

We shall, from now on, distinguish the coordlnateq'by denoting

(8a) where

(8b) and

it as § It is our aim to find a complete system which
separates § from the other coordinates. This can, in general,
not be obtained, yet, it is possible to find a complete set
for the internal nuclear motion of the molecule where the

eigenfunctions have the form:

(9) Y(g”ZU“"?M ) = @(g)?(g"?z’ "—"?M)

with the property that
(%) pehaves wave-like in §

VN3 72,....,7~ is a wave-type function inW,,... /.
but not 111§; the variation in g will befound to depend on
certain curvatures of the potential energy surface.

If we determine

g = Vz'(X,9°"' X“()

such that
, »n. " M
(10) R T

the kinetic energy operator now reads
T (vu T’J
(11) = +
20:1

- TP LT




e
. The Hamiltonian is

- T U

(12) TR T 1

I

Note that ?Hfdepends on all internal coordinates but

contains only differentiations with respect to whereas depends

cnﬁgonly as a parameter.
Then the eigenvalue problem
w -
(13) £ in> = £ (§)in>

»"*Mmes'f;(§>curves of the following kind

RE(S) R M)

Diagram 1

tmy

These curves do not intersect by similar reasons as spectros-
copic terms. Furth%gmore, we may define the diagonal part
of the operator 3r> with respect to {‘“?}:

(14) 3;’5 = ) imy<nl fv‘gfnxnl
n

and solve the eigenvalue problem .
”~ § o o~ _ ~
(15) [{nl T %y + EnB)bimv> = £ I

P
where [nv» depends on § only. Then it is easy to see that

— T
XITRO ; LXCRO
Gy ! Toot e
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£16) Inv > =1nylnv)

is an eigenfunction for

£ —
(17) {T;{)Jr?f”}/nw =k, iny>

We write this equation in the form

(18) H, Inv>=E invy

Since the non-diagonal part of .f ’ !(nd) is defined by
G § §  oof

(19) = T+ Jous

the Hamiltonian is now split up into a main part and a per-

turbation ZF
13
K=&, + %
H. +V

#

(20)

[

Assuming that wave-packets which lead to reaction will
not deviate much from the reaction path we may expand the
potential in eq.(13) to second orcer terms in theﬁk_and
use familiar methods for the treatment of swall vibrations.
in the vicinity of g point on the reaction path with coordi-
nate % the coordinate surfaces Q& = const may Pe substituted

by their tangential planes,

S e (00X
(212) N, = ¢, (8)+ éd‘fm ¢
or in matrix notation
(22b) Z’P = CO -+ CK .

copy ! i ey
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After any initial choice of the coordinate surfaces N
in this approximation all‘z for i,k > 2 become functions

. of % only, hence

M .
v 2k ) 9
(23) T =% Z G 0. I,

Expansion of the potential yields “
M

Ly

(26)  WCS,p,,. ) = UCE,0-m0) + 1 iy + E)‘J‘k‘“(g)%?k

The ﬁ(&) will in general not be zero wherefore we introduce

new coordinates

—

(25) N, =M~ (E) or ')?ﬂb-—ca

thus that
’ (26) W7, T ) = W(E,0,,0) + 2; RO,
. k=%
and

Moo M
1 9 D L
(27) & = _‘{; 2_ & (f) 3y t u(?,of o, 0) t+ ﬂzkik(§)7-7k
zl =2, ?' ?K z‘k:z
Now a new reaction path which may be called the "dynamic
reaction path" can be defined by the set of equations

(cf. equs.(6) )

(28) ?21-_- )’(3 = --—-:')ZM

Since all this holds for a fixed § we have to put

(29) £=¢

In equ. (27) kinetic and potential energy can be made

a sum of square terms by a transformation

) (30) ;Z;':Afz“ 72/72

R T
FRe XrRo . | xrrRo rl 0y
ey cory Tereney
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so that it now reads

(31) &= ?

It can be shown that in the new coordinate svstem equs.(10)

+ Az(g)zlg + 22(?:0)""0)

still hold.,
From (22b) and (25) follows

Q-¢-a + Cx

= éo +CX ) €, Co"@

and with (30) we have
AQ -~ ¢ +Cy

Q /\@o-f}\@iﬁ

+ Cx .

]

C.
(32) ~ e
Ca = A @o

C - A'C

Starting with(32) instead of (22) equs.(10) become

|

CZIK _ jf?_l_ jzé. 97
T Me % Ix
3N € -
- S22 x
=) G (§)
= (4=2,3/"IM)
or ~~ ~s ?E »’/Z‘
B - ' s ~ ]
(33) Cd =o wnere o, = 50 (5 ) , 4= c}
N
rro xyﬁeg ‘Eﬁﬁé yrime
_ T
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On the other hand,the particular form of the Hamiltonian
we are making use of was attained by choosing some tﬂ

which satisfies, according to (22), the equation
(34) Col=0

Since A is non-singular, (33) is fullfilled by putting

~

(35) oﬂ = 04

We can therefore, in the limit of small oscillations around
the reaction path, change the7z ~coordinates to the i{
without violating the condition (10).

After all,we can write the energy En(§ ) in a more

elaborate form
(36) E.(8) = Zw£(§)(n;+;') + MCE)D"“IO)
2= 2

By this approach we have neglected all anharmonicities

except those which occur along the reaction path. Undoubtedlyl
in chemical reactions the anharmonicities a wave~packet

is subject to on its way streight towards the saddle will

in general be more important than those of oscillatory

motions which can not immexditately lead to reaction.

We finally have to give a proper delinition of the
one-mould Hamiltonians;Kﬁ and ?Z: which one needed to
construct the initial density matrix § . From equ. (13)
follows the set of curves En(§ ) . Let us denote the maximum

in the middle of the n-th curve by §n, then we may define

L — -
XERG {xero
CCOPY sf‘,Qr"(
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1

Eerm> - BUIney = EXE)ingy  fr B4

)

]

%iv(f) Img> = E,:"r(g)mﬂ> o § 2 ‘§n

inr> and Imzp> will then be equal to Im> in their respective
. , T _ T
regions, Furthermore, choosing E”n(E) = E.n(EL) for

PNt

§> §n’ we may define | nvp)and E?nv by

3 - ~ ~I @~
with a similar equation holding for mould 1I.

T Iy
Thus ?Zo and ZQ are given eigenfunctions and eigenvalues
~ I- - Fan 4 E .
Ing>inyvgey » E7, and Ing>invg> , E ny Tespectively.

It shall be noted here that for the problem we are investi-
gating only bound eigenfunctions, located in mould I or II,

are of any interest,

T —
‘R‘- and “7‘{’0-can then be defined by

Yahe ) nlﬁr '
5
oy - S .. _
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4) Derivation of Relaxation Equation,

We shall now consider an isolated molecule with an
initial density <, which is non-diagonal in the eigenstates
of the total Hamiltonian &€ . The crucial question is what
the assymptotic behaviour in time of such a system might be.
Molecules are finite systems and therefore it is not evident
whether we shall be able to derive a master-equation
describing the internal relaxation process. It can easily
be recognized that not all the assumptions ‘employed for

7,8,9)

infinite systems by van Hove and others in order

7) L. van liove, Physica 21, 517 (1955); 23, 441 §1957)$
‘ 25, 268 (1959)

8) R.W.Zwanzig, Lectures in Theoretical Physics 111, Boulder
1960, Interscience, New York, 1961, p. 106

9) A. Janner, Helv. Phys. Acéa 35, 47 (1962); 36, 857 (1963)

to derive a master equation will hold. Nevertheless, we
shall be able to establish an assymptotic solution of the
von Neumann-equation which holds on a certain time scale.
This can be done in a moré straightforward way by direct
investigation of the damping form of von Neumann's equation

than by applying a Laplace-transform method10’11’12’13),

10) W. Kohn, J.M. Luttinger, Phys. Rev. 108, 590 (1957)

11) S. Nakajama, Progr. Theor. Phys. (Kyoto), 20, 948 (1958)

12) E.W.Montroll, Lectures in Theoretical Physics,11I, Boulder
1960, Interscience, New York, 1961,p. 221

13) E.W. Montroll, Fundamental Problems in Statistical Mechanics
Nijentode Castié 1961, North Holland,
Amsterdam (subsequently cited as:Nijenrode
1961) p. 230

xrro T
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In applying the results to intramolecular rearrange-
ments we shall make use of ideas, essential in all common
theories of monomolecular reactions 3), saying that under
certain conditions the effect of collision with a heat-bath

will be neglegible.

Deriving the damping-form of von Neumann's equation we
may follow the well-known procedure, yet keep in mind that
§; will not commute with the Hamiltonian of the unper-
turbed system, #o . Let the perturbation be the hermitian
operato;brﬁhich may be identical with @jin chpt. 3. How-
ever,Lr andya in principle may also comprise electronic
terms. The Hamiltonianqzof the molecule will then be

H= T+ VU

and von Neumann's equation is

(37) 1o = [&,8]

%

t -1t
Defining é(“ - @ ?(t)e,’ Co

we find by differentiation

sty = -1 &%y Y]e'?("t

and by integration

+
- e o
o) = ¢ _ =-zfel [V,e(z)] e oz
or °
—‘%ot ot t-i 0(1“?‘) '('Ro(t“z’
W‘L) = ez e e ~-1:{e [V, g(t‘)] e )0(7—

Substitution into equ. (37) gives

. _ L i dE Tt
(3%) §3=—i[_'7(0,§‘]—hl_v',€ o, ¢ ]
t T (E-T {HL(E-T)

- [V, (¢ )Ev“.wﬂ e dr

IR AN Eial

IEREIN
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what may be termed the damping form of von Neumann's equation
with an inhomogeneous term, the latter reflecting the non-

commutativity of afo and fo'

The eigenstates [&> of the unperturbed Hamiltonianzﬁ;)

with
Holx> = E 1t

may form an orthonormal basis of real wave functions
since we shall be not intemsted in processes involving
dissociation of the molecule. The eigenvalues E; will be
discrete and there are none but accidental degeneracies.
Denoting _

wa(f, = E*—t:{,
and changing the integration variable we can write equ. (3& )

in matrix form as

O(f“ f‘%?t -19)
E 2 - =yt
' e ’ Y o oty 77 € ]
3 ¢
..2_ v V e [t..?‘)d?i V ,_,’M,(a'c“‘.? .
(39) M “g ? “f‘fe A

-nw L
T Yy é‘,&f ?re(t'f)d'l" 'f‘V f—w g, ({ AT

Equation ( 39 ) is nothing but a different form of the von
Neumann equation and therefore still reversible. How-
ever, we expect those terms depending on the square of
the perturbation parameter to turn out as internal inter-
actions ( "internal collisions ") of the molecule which
may in some sense give rise to an internal relaxation
process. Even though equ. (39 ) itself is untreataﬁle we

shall try to construct an assymptotic solution which holds

T —— . L
RO Xt no, XrRo St hy
oy qmrv cony 'y |
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for the order of magnitude of time which is of physical
interest, To this behalf we first have to study the time-

scales inherent in systems of molecular magnitude,

The assymptotic solution ?(t)we would like to esta-
blish shall hold for t of the order of the relaxation _
time. A necessary condition for such aSN})to exist is14’13’10)

that two characteristic times of the system ,

14) N.N. Bogoliubov, Studies in Statistical Mechanics,
North~Holland, Amsterdam 1962,p.1.

15) L. Van Hove, La théorie des gaz neutres et ionisés,
Les louches 1958; Hermann, Paris 1960,p.151.
16) L. Van Hove, Nijemrode castle 1961, p.157.

an atomic time,?;t, and a transversal time,t& , are of entire-
ly different orders of magnitude. If our physical interest

in the system, characteriged by the expectation values we

want to calculate, requires a time af the order of magnitude

Q; and
(40) Tut 4%2; & T,

then certain simplifications can be made with equ. (33)
which may allow us,ﬁo establish the assymptotic form of P&L
In fact, for chemical purposes we shall concentrate on a
time-scale on which mayor changes in nuclear configuration
will take place. Chould the system be such that its as-
symptotic behaviour can in some sense be described as a
relaxation process, then T, undoubtedlyhas to be of the order

of the relaxation time.

It is very simple to identify Toe and T, for a mole-

v
cular system. 7?3, will be the average over the reciprocal

distance between occupied levels,
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Whereas'qris the average distance between occupied adjacent
!

levels o and -_
! (E‘h‘ = w

TY

Roughly, for molecules.undergoing intramolecular conversion,

we may put u&F = E E being the energy difference

A TA
between the saddle point and the minimum point of the reac~
tant mould on the potent1al energy surface.

Then, with EAN /0 — /0 at u.,

=t 16 _ 1p'7
Qe = tA > j0 -0t 2 () 107 sec.

Estimation of Ti.requires the knowledge of the density of
states in the saddle region. Using the harmonic approximation

according to equ. . (36) and extending it by assuming

W, (E) = (‘Ji(§o_T_)= az

where_&i is the minimum of mould I, the condition for a

potential/curve to have its minimum below energy»EA is
M —
(H) L dim £ Eg-4 24
2=
The number of sets }nz,.....,nM} , fulfilling equ. (&),

is approximately ( neglecting the zero~point energy in this

equation):

{ o M- 17)
cdn,, = gt 3)
M — —
3 T8, (ol -

™
&5

17) For a more precise estimate see
E.W. Schlag, R.A. Sandsmark, J.Chem. Phys. 37, 168 (1962)
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Let && be the average density of states in mould 1 of each of
the curves En(§ Y, Then the density of states 6°(E) over the

sacdle region will be

Assuming an average ratio

—

Ea
- - %0

[%

and a level density L

a = /03 (qi‘.u)"
we have

w = o (E, )-’

and this time will be very large in comparison with Tyt and
. &% . For M = 12, 24, 39 we have T = 1072 at.u. (10—2sec),

10%%at.u. (107sec), 10°2at.u. (10°% sec) respectively.

These numbers indicate, that condition (40) will ve

very well fulfilled by molecular systems of chemical signi-
ficance. It is important to note that even for systemwms with

a small number of degrees of freedom thie level density is so
high that the uncertainty relation will play a part throughout
the process, as the eigensfates of the unperturbed Hamiltonian
can never appear separated within times of the order of T, .
The variation of the matrix elements éfdﬁ of an observable &Z
with &£ and F , where ¥ is a state out of an energy intervall
Ab‘a and { out of AEb, will then be irrelevantif AEa and
[lEb are of th order Tf’ or smaller. Therefore we shall find
it sufficient to establish an assymptotic solutionf?f)of ( 39)

- g .
H 37(!:00 iYL R0
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which also varies slowly with Eg and EF , the characteristic
ranges of change bewuing determined by ﬂoand the matrix
elements VQ . To this end we take several formal steps

starting from equ.{ 39).

The sums in equ.(39 ) cannot readily be replaced by
integrals since the matrix elements V&F are not smooth func-
tions of E;and,%b. However, dividing the energy scale into
equal intervals AE1,AE2,’......,AEa, ....,AEb, ceee

with numbers of states g4 gz, SO - ...,gb,... we may

average M%aover these intervals, writing
Vig = 7 2
BT ke P
where {&qQ denotes that the states & are taken out of the
intervalgﬁEa. \éF will now be a smooth function of the parameter
a , if
A1) a large number of states lie in each interval
AEg,

A2) the density of the states ga/ZlEa is a slowly

varying function over the energy scale.

In addition , we shall require {the length of the intervalls

AE, to be of an order of magnitude to fulfill 2third condition
-{
A3) AE KLT,

According to A1) every interval will comprise many states

of any kind. Following the procedure used in chpt3to construct

a basis for thie molecule with a harmonic approximation one
can see that to a given eigenfunction |y we may find,

within an energy distance of the order of the level splitting,

another eigenfunction, 1&#> , resembling |«'> nearly perfectly,

rnﬂ‘
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exept that one oscillator-function contained in {a“> has one
node more whereas another one has one node less. Thus, gi-
ven some‘&ﬂ, we may select a large number of matrix ele-
ments with x€a which differ only slightly from each other,
since conditions A2) and A3) are eusily fulfilled by choos-
ing AE, suitubly, the average\éf may be considered a slow-

1y varying function of E&

Now we may sum equ. ( 39 ) over all Xea and (35'5 .

Using the notation

Z %

»

S.p

I =
ey ehp = Wzt
& do ﬁ’ T
we may replace a %; Ly 22%1 tahen over suitable average

- values, ending up with

A . 51 Siweg jickzt
At = - 15 Sa'o -t 2{{3a ac §o¢be —?bﬁ"m%ce }
‘Z‘j t"' '."J(:;T ~)d
oy da ;c ac Eé"( $e (t ¢
0

Equ. ( #2 ), as it stands, may be treated further to find
an assymptotic sclution ?ﬂﬁ. More insight in the nature of

the solution, however, can be gained by the procedure used

. in the following.
;I‘n(‘ % ;;;6] fxre 20 Cxr o
cory | cory ! teory : R
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Since T, and T, for most molecular systems, are of such a
different magnitude there may be an even coarser contrac-
tion over the energy scale for the assymptotic density
matrix y&)which nevertheless will lead to the same eqecta~
tion values. Having choosen a division of the energy scale
into intervals AF which are as small as possible by order
of magnitude, we may find a coarser division into intervals
AE', suitable for simplifing the solution of equ.( 42 ) in
the following way. Let the intervals be

A BE), .. AEs o, DEs,
containing an even larger number of states

G1, Gz, ¢ o0y GA,..-, GB,...

so that
—)
(;A - 32% 3@
and
B1) G%/ik is a large number

'
Furthermore, AE’" shall be taken to be us large as possible
by order of magnitude, yet fulfilling the requirements
B 2) AE’ S energy interval of characteristic change
in S with E, and Eg (e )

z
B 3) AE % energy interval of characteristic change
of g with Ej or B

B4) AE'&«
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Xrro AFRO
Cery | oy

IR AN

LI AN
;
-~ R



_”39'—

From the conditionsB the requirement B3) will normally be
the most restrictive one, thus determining AE, We shall be
able to construct an assymptotic density matrix §(t) , where
g{xp(t) will not vary appreciably with XéA E, and e Eg
Qur method is somewhat similiar to the use of coarse-~grained

densities in classical statistical mechanics.17’18’19)

17) P. Ehrenfest, Collected Scientific Papers, North Holland,
Amsterdam, 1959, p. 213

18) D. Ter Haar, Rev. Mod. Phys. 27, 289 (1955)
19) N.G. Van Campen, Nijenrode Castle 1961, p. 173

If we sum equation (42) overé%ig;;he first two terms on the
right hand side can simply be written in terms of the indices
A4,B,C, whereas the collision terms can be given further
treatment. Let us look in detail at the first collision

integral; the others can be handled in analogous way:

¢
~lep T
Z; dZe. da de Vie Vaz jewz" S’e‘,(t"")"("' =
b 1)
(43) 8 ° t _,w{_z,*,'(’ —ie)z8 T
= 3 V._ V.. ———— (¢-T)clr
- ‘%E G&‘i: Aé ce 35 ) bt i% ¢

Expanding S(t-f) under the integral-sign in a Taylor-series

o (¢-7) = Z(k, )

we have to evaluate the integrals

~
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The ?k can be generated out of each other by differentiation.

I 9"
3'( = ikk! gwk ?o

Since W:tP» | for nearly all terms under the sum in (4&3) it
can be readily seen ( introducing =0 EB as a new variable
of integration) that the upper limit in the integral (4d4)

may be taken infinite. Then we have

_ {O for E- <EE}’"
pﬁ 5 = @.B(Ea) where @‘B(L‘Z) - T o Y
I:_BLt' < E
P F o= i 0F L) © e
° “er ")

S denoting the Principal value,

or
= E. ' AE'Or -

45 K= SE)+iAETE()
Furthermore

7 = axi (& ey, ) — J%Q}
and 9k—l

AN
Fe ® 7k W(C’&MZBN) NO)

2% (J“") J(k-l)
+

——I-l‘/(! (‘Jé’B‘QI) - + [MZB))

(S*_(a)) can also be represented by

(44) é_’;(u)‘) = f?t'fat --L:" ! .
g>p Wi -1

S, .
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and therefore

- - /
wny &t NS

t 2T E-20 (a)—lﬁ)k

The collision term (43) can now be written as follows:
DL R/
2" AE@ & A "¢

gg‘: (t) gk‘( Wege, Yre )

ny

B 6,Gp Ty . .
(8) T4 Z—E_'—gf"(tz dE g VIEg &) V(B £ ) U6 i)

; (/]
B - -
T ZATE (g (o gl Er)VIEW, B) S 5, e
ZB o -E
where (W = EE - EB was introduced as new integration

variable.

We can now show that the ratio of two consecutive
terms of the k-sum in (%48) will be small.-
The (W) - integral in (48) has the general form

L3
(49) dk = fo(w Ftw) & (w+DE', )
“Ea
Where F(&)) is slowly varying withw. It is easy to see
that the ratio between the terms with k=1 and k=0 is small.

We have

=) oQ
do go(w F(w)g(w+AE’u) gdw FCU)AEJWJ(U)
.-"'5 -E_,B
& - Tuw F Fw+bE W) Totw Fe %1 (3, (+DE') i)
, = fom Fea) F( W) = de w) A (d, coraE’) - g
-E.B —E;B
) ke [krne. pare
o ey e — -
T e S
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) Similarly, we fing by (%#7)
) - Sk-0) |
. (k1) le-1)
S°—————( A o 2 (F Cpe) - f('c'w)
k-1) (k~1) ,. =
e =2y oo
R N (2)
PR )
~ Cat + (o) ?;.t
4 7:(‘"'20) .';: «!
& (k=1) () Geu1) -
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expandable in power series which decline rapidly outside the -

circles of radius Ty and QA respectively.

Qur system is thus big enough to neglect higher order
terms in the expansiomn of Q (t -T) (for infinite systems
see E. Montrolls13) treatment). These achievements shall
allow us to rewrite equ. (¥2) for an assymptotic density
matrix, defined over the coarser energy scale AE’'. ,
Since all functions occuring in the collision terms are smooth

enough, 9% from equ. ( 41) may be replaced by
- /
7 o= AE 2 d, (Wpp) .

The imaginary part of J:&%B) will give rise to a renormali-
zation of the energy levels which has little effect on the

assymptotic $olution. We shall, for the sake of simplicityl
leave out the principal value integral replacing J;CLJ) by
iL;chw) . We then end up with

(50)

_-bﬁa»%Bngch-F\éE ER ﬁgCJ;F} )

)
where the JS‘represent ordinary Kronecker symbols. Equ.(50)

is a master equation with an inhomogenfeous term.
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4) The Character of the Solutions

Equ. (51), by virtue of its inhomogenéous term, may. have so-
lutions which behave oscillatory at infinite times. It is there-
fore necessary to prove that a relaxating assymptotic solution
g(f) exists which fulfills the requirements A and B stated in
chpt. 3., As main reason for a relaxating f&) to exist we shall
find the smoothness of SL over the energy scale, with other words,
the condition that the time <, ,
initiasl state, hus to be such that %, &7, . If we could prepare

allowed for preparation of the

initial states in an arbitraty way we might well be able to choose

© such that the assymtotic ga)remains oscillatory.
[}

The homogeneous part of equ. (51) has to be treated first.
To that behalf we have to investigate the underlying eigenvalue

problem,
' - ) Z roF _ )
(53 L™= -i[#.,87] - [V, [V, 1] = 24"

This operator eguation may now be turned into a matrix equaE}on
by introducing a basis {IK?}. Considering the smoothness of \Qp
over energy intervals AF’ one should keep in mind that the ei-
genvalue-problem (53) over the basis U“>f can readily be con-
tracted in the same way as equ {(39) was summed and smoothed
over all ®€a and f&b , respectively all a&c A z2nd b€ B . The
basis {ld>} is used here for simplicity of writing only. {h<>§
may be truncated to a finite set by eliminating all [«> with

Ey 7 Eay » Where Emax 1S an energy above which the occupation

density of the levels is negligibly small.

Equ. (53) can then be solved within the linear vector spuce

of n-th order square matrices over the field of complex nuumbers.
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In that case we huave to define the inner product as

and assume the §

“) a.) Z\ )% ts.)
(fm.f Sug S

to be normallsed so that

(s® ¢y =1

Now we can show the following:

T1)

12)

Symmetric eigenmatrices of equ. (53) belong to zero eigen-
values and are diagonal.
) ‘
Let ¢ be any symmetric ei§enmatrix, then the collision
term'yill be zero, since V" is symmetric and therefore
E'ﬁ" ?(f{%},a. From the quadratic form of i remains only
/0 - 9
"l(f /Ly{f';y J) =2y
or
L ) . ),
Ap =30 o T, 8] = =i DRl -
Y] X
1 xp g <@ (.x g

since the sum changes sign when interchanging « and F .

furthermore, from

'-if?fo.s";’l = 0

or
é‘{) =0

?:qp) =0 for x#f

If all \/P#:O the nonvanishing eigenvalues huave a nega-

follows

tive real part.

~
§ﬁ” shall denote a non-symmetric eigenmatrix. Then
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The condition v,((g#:o for all « and g seems rather
strong, even if it is very unlikely that one of these
matrix elements will vanish, However, for establishing
a physically relevant solution of (51) we only need the re-
quirement that glb#ij, what will be fulfilled in all con-
civable cases.

By means of T1 and T2 it is also easy to see that
the eigenvalues jL? , belonging to non-diagonal elgen—
matrices, are non-degenerate and that any two such §ﬂ) are

linearly independent.

The homogeneous equation (51) will then have the solution

(4) ;. A9t
(54) g () = 2:757 d?e 7
h 9
where the dq, are uniquely determined by go, namely
. @)
1
;x’rfi;" ;FEBI !”'}’7‘6 * 1\‘ [£1¢]
CQpy f ooy ) » ) J"'V'(“B‘
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We shall first look at the diagonal part of g(t). In this

case only the inhomogeneous term may play any role:

d — —z%f t ot
ocs::‘( i T, e et
- ""wr.,(f -l gt
2; oy (Sore ® " oy © )
The g~ suﬁ can be converted into an 1nt9nra1 readlly.
go is a real, symmetric matrix, therefore
(55) e ()-8 . = 2.51‘2; [e i) = § $y(Wy)

= 0.

As one might have expected beforehand the occupation of the
eigenstates of afo in the ensemble does not change in time
since there are no external collisions and we are dealing

with the time-assymptote of the density matrix.

For obtaining the solution of the inhomogenéous equation
we have to expand the inhomogeneéous part in terms of the eigen-

matrices gﬁ). As the diagonal part of the inhomogeneous term

is zero we shall have non-symmetric eigenmatrices in the ex-
punsion only. Denoting the indices of non-symmetric matrices

by € , we have
L= i et
(56) -ifU,e ¢

o

1 Kot 1 )
AR T
1

The general form of T:&>needs to be worked out for later con-

@)

clusions. Using the linear 1ndependence of the ¢

we can form

the inner product of equ. (56) with gv)-

Ax
I3,
«Q2
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Z—j(f&: s)(‘?))];({) i 'lz (H(
q

¥ “F °3*p

- ““”7‘ &= S
Z Sore 3 (’(‘{W'\?d)

(57) - -3 ,zu t F)
: PFJI

572) R&\ ) Soo«[i Z (H*( ) .

Denoting

‘YFt__ - ““)olg‘t
Gl )

and the adjoint determinant of D by D" , we can obtain [a(t)
from equ.(57) by

P W
- -l"»)r t —;. ’Y‘\? (r)
= e F (=Z)LD'R
(58) % (3 2; er
I A e (1)
= D
’T @

We can easily see now that QFTIS a smooth. function of EF
and Ep . This will be so if RA{ is a smootr function of
these varligles By ()7a) we can see that Ry depends in a
smooth waonnly if S;p depends smoothly on Eﬁ . This can be
seen by looking at equ. (52) for the eigenvector fﬁ)f

ing to an eigenvalue .1? and forming the ﬁd ~matrix elements;

» belong-

- ri% VY] (r)* * 7
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or

]

g:r) - 'TL‘+ 2; VP*\ZI(#{U _ g(?))

P A A o

Therefore f depends on EP as smooth as pg/(hd +Aﬁ) what
is perfectly sufficient to convert the ¥ -sum in (58) into

an integral.

The total solution of equ. (51) then has the form

t
<1 & t7 DT
o(t) = ),_gmo{? + ):gmel’ {e = f:\(.'lf')ﬂ(?.\‘
] 0

Zf"’ob ah Z‘?‘”J"f M @

wvhere ﬁ@bis the diagonal matrlx ropresentlng the diagonal part

(58)

qu)

negalive
of gc . According to T1 all 2@‘ have a non~vanishing,real part,

therefore the terms under the first sum are damped exponenti-
ally, but this is not immediately clear for the terms under

the second sum of equ. (58). We have

A 25T Aqt -2 - [
e"‘ltfel‘?‘ ydr= )€ QFXJ( T DA
| 7

(59) Ll«J
e

0

t Y
oF —-glt C??)
Br 'ia%ﬁ— 1? Pf

The second term under the sum is again damped, so we focus

attention on the first:
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where STE)is the density of states. By the substitution

Er=% +idg + E

this goes over into

N x>127 -2
1(0(& 6"(1‘:){ (2+F+)/1")6§<E‘_+E4«).‘) i3 A2
~(E+i23)t

The integration path of the inner integral is from the point

_(E+il§)t, which is lying in the positiv half-plane, parallel

to the real axis to + 00 . The distance of the integration

path from the real axis is of the order of magnitudef since

£, & Rexg |

We then extend the integrand analytically and close the integral

path C by encircling the negative imaginary half-plane clock-

wise, coming back to the pointrdgﬁ)otvduch is of the order
infinity under the outer integral. We obtain

- -7-’;}-
1)
Aﬁfjo(b &(E)fﬁ‘( +12 g)Ql (E)%-}E-Hl?) ¢ Az

-2

jo(E'y(f:)d'(E'f'z;l?)Q

This shows that the terms in the second sum of (58) are indeed
damped exponentially.
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5) Conclusion

We were able to derive a master equation for an en-
semble of isolated molecules. It should be borne in mind,
however, that the statement of equilibrium for the mole-
cular system by some kind of experiment is bound to « time

scale T% of the order
% €

‘the necessary requirements were of a rather general nature
and likely to be fulfilled for malecules with 6 or more
atoms. inequality (4¢) will always holid if Lris sufficient-
iy small, as can easily be seen by equs. (54) and (41a;.
turthermore, the smoothness of k&; » guaranteed by con-
¢itions a1)~A3), can hurdly be thought to be not fulfililed
in any non-pathological case. It was mentioned before that
the requirements 151)-B4) are not essential in deriving the
master equation. they may, however, in practice play an
important role for condensing the original set of equations
to a lower order, 1in many instances condensztion muy be
possible to an extent where the range of energy involved

is divided into 10 intervals only and yet allows to des~
cribe the reluxation process with sufficient accuracy.
Estimution of such very coarse matrix-elements \;B,partly by

experiment,is then not inconcivable any more.

A crude way of determining by orcer of magnitude the
rate of un intramolecular rearrangement reaction { in the
region where it is of first order) would be to use a suitable

average over the ;%31? as a rate coefficient. retermining

o

T, suchh that
Rexp » T
Qe
”~
1
RS e i




- L}.3_

we could use
&g

as a rate coefficient.

RI-

According to the outline in chpt.2 the complete expres-

sion for the rate will be
od I _ AR

The general form of- g(t) is

7 @) At
?(f)=§o(d)+%\—§ ¢ EI‘
and
ol @ At
Toe Tl R
so that

‘ﬁ?t T .3
(60) R = L’ Bte(KEe™T)

R by equ. (60) is a real quantity because the eigenvalues

R
appear pairwise, i.e. if )ﬁ~is an eigenvalue ;l? is also one,

Finally we may study the mechanism in an intramolecular
conversion reaction including vibrational relaxation after
external collisions. Though we did not include external
collisions explicitely in the description of the relaxation
piocess we can make use of the master equation (51) for the
period between collisions, If the duration of an external

collision is short compared with the time between collisions,

T,pe + We may again specify an initial density §I by a set
Q
———— ) T
XERO| {xemo.
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of commuting observables. f} is then the initial state of

an ensemble representing wave packets which are localized onto
configuration 1. Applying equ. (51) we can say the following:
gf will, in an eigenrepresentation of gfo, have large ele~
ments far from the diagonal. In the expansion of gf in terms

of the eigenmatrices gﬁh
- (GD)
L.y a(
fo .—21— § q

I
there will large 0% occur for highly unsymmetric ?

)
6D

By equation (54),the negative real parts of the eigenvalues
corresponding to these eigenmatrices are the largest. Thus,
the parts of the density matrix far from the diagonal will
quickly be damped away. We arrive at the same result if we
set up equ, (51) for a density matrix ?(t) with I; 1nstead

of yfo. From the latter case we can see immediately that

lim ¢ty = ¢,

. E>e0 )
EL being the one defined in chpt.2 and the relaxation time
q;for this process may be used to determine the order of
the observation time T@\, for identifying the initial state
of the s=pecies I, |

x, =
Thus, if ’C;E y/4 ‘E’wum\o("z;, what will usually be the case,
and also the characteristic change of the diagonal elements
of g by the external collisions is slow compared with T;,
equ.(51) will give the correct rate for the isomerization

reaction.,
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